1.

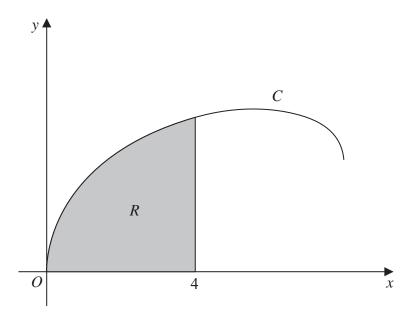


Figure 6

Figure 6 shows a sketch of the curve C with parametric equations

$$x = 8\sin^2 t \qquad y = 2\sin 2t + 3\sin t \qquad 0 \leqslant t \leqslant \frac{\pi}{2}$$

The region R, shown shaded in Figure 6, is bounded by C, the x-axis and the line with equation x = 4

(a) Show that the area of R is given by

$$\int_0^a \left(8 - 8\cos 4t + 48\sin^2 t\cos t\right) \mathrm{d}t$$

where a is a constant to be found.

(5)

(b) Hence, using algebraic integration, find the exact area of R.

(4)
